Sheave Size & Wire Rope Strength

Strength Efficien y

Bending wire rope reduces its strength. To account for the effect of bend radius on wire rope strength when selecting a sheave, use the table below:

Ratio A	Strength Efficien y Compared to Catalog Strength in %
40	95
30	93
20	91
15	89
10	86
8	83
6	79
4	75
2	65
1	50

Ratio A = <u>Sheave Diameter</u> Rope Diameter

Example

To determine the strength efficiency of 1/2 diameter wire rope using a 10" diameter sheave:

Ratio A = $\frac{10"}{1/2"}$ (sheave diameter) $\frac{1}{2}$ (wire rope diameter) = 20

Refer to ratio A of 20 in the table then check the column under the heading "Strength Efficiency Compared to Catalog Strengt in %"...91% strength efficiency as compared to the catalo strength of wire rope.

Fatigue Life

Repeated bending and straightening of wire rope causes a cyclic change of stress called "fatiguing." Bend radius affects wire rope fatigue life. A comparison of the relative effect of sheave diameter on wire rope fatigue life can be determined as shown below:

Ratio B	Relative Fatigue Bending Life
30	10.0
25	6.6
20	3.8
18	2.9
16	2.1
14	1.5
12	1.1

Ratio B = <u>Sheave Diameter</u> Rope Diameter

Relative Fatique	Relative Fatigue Bending I Sheave #1	_ife
Bending Life =	Relative Fatigue Bending I (Sheave #2)	_ife

Example

To determine the extension of fatigue life for a 3/4" wire rope using a 22.5" diameter sheave versus a 12" diameter sheave:

Ratio B =
$$\frac{22.5"}{3/4"}$$
 (sheave diameter) = 30

Ratio B =
$$\frac{12"}{3/4"}$$
 (wire rope diameter) = 16

The relative fatigue bending life for a ratio B of 16 is 2.1 (see above Table) and ratio B of 30 is 10.

Relative Fatigue $\frac{10}{2.1}$ = 4.7 Bending Life = 2.1

Therefore, we expect extension of fatigue life using a 22.5" diameter sheave to be 4.7 times greater than that of a 12" diameter sheave.